ATP-dependent chromatin remodelling complexes (CRCs) are large multi-subunit machines required
in all eukaryotes to overcome the barrier presented by the tight packaging of DNA into nucleosomes.
By harnessing the energy released from ATP hydrolysis to mobilise target nucleosomes, CRCs provide
DNA access to the factors responsible for transcription, DNA repair, replication and recombination.
Whereas the yeast SWI/SNF chromatin remodelling complex is primarily involved with stimulating transcription
at inducible target genes, the mammalian counterpart of yeast SWI/SNF, the Brahma associated factor (BAF)
complex, plays a fundamental role in the establishment of tissue- and developmental stage-specific
transcriptional programs. In fully-developed mammals, the BAF complex also acts as an important global
tumour suppressor. In recent years, cancer-cell genome sequencing studies have shown that mutations
affecting BAF complex subunits are found in a staggering 20% of all human tumours. BAF complex mutations
are particularly frequent in cases of Melanoma (39%), Colorectal (55%) and Ovarian clear-cell (75%) tumours.
Despite these fundamental developmental and tumour suppressor activities, surprisingly little
is known about the subunit organisation, molecular structure, target-gene recruitment and functional
regulation of the SWI/SNF-family complexes. We are using an interdisciplinary approach
comprising yeast genetics, biophysical analysis, in vitro reconstitution, mass spectrometry, x-ray
crystallography and cryo-electron microscopy to shed light on the structure and functional mechanism
of this important family of macromolecular machines. In doing so we strive to lay the foundations for
future chemotherapeutic development to target mutant complexes in a range of human pathologies.